

Honeywell Research Chemicals

A história da Honeywell Research Chemicals data de mais de 200 anos quando o químico Johann Daniel Riedel começou a fabricação de produtos farmacêuticos em Berlim e quando a fabricação de solventes de alta pureza começou em Muskegon, Michigan, há mais de 50 anos.

Atualmente, Riedel-de Haën™, Fluka™, Hydranal™, Chromasolv™, TraceSELECT™, Burdick & Jackson™ e muitas outras marcas líderes mundiais integram o portfólio dos Produtos Químicos de Pesquisa da Honeywell, proporcionando aos pesquisadores uma opção de produtos químicos e reagentes analíticos consistentes e de alta qualidade desenvolvidos para melhorar a produtividade.

A divisão Research Chemicals está sediada em Morris Plains, New Jersey, com locais de fabricação de classe mundial em Seelze, na Alemanha e Muskegon, em Michigan. Produz solventes e reagentes de alta pureza para pesquisas em laboratório e aplicações de ensaios.

Área de atuação

- · Laboratórios analíticos
- · Laboratórios de análise instrumental
- ·Cromatografia
- · Espectroscopia

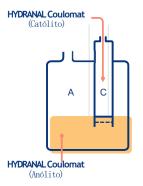
- ·Indústria farmacêutica
- · Universidades
- · Centros de pesquisas
- · Análises clínicas

A QUÍMICA DE KARL FISCHER

A técnica de determinação de teor de água por titulação de Karl Fischer foi desenvolvida em 1935 por Karl Fischer e é baseada na reação de Bunsen. Em 1979 ela foi postulada pelo Dr. Eugen Shcholz como uma reação de duas etapas:

1)ROH + SO_2 + R'N \leftrightarrow [R'NH]SO₃R 2)[R'NH]SO₃R + H₂O + I₂ + 2R'N \rightarrow 2[R'NH]I + [R'NH]SO₄R

Onde: ROH = álcool, tipicamente M etanol / RN = Base


A reação número 2 nos mostra que água e iodo reagem na estequiometria de 1:1 e base da técnica é o cálculo do teor de água pelo consumo de iodo na reação.

Na técnica de "KF" volumétrico mede-se o volume de solução com iodo dispensada. Na técnica coulométrica mede-se a corrente elétrica necessária para a geração de iodo no eletrodo gerador.

O método da década de 30 utilizava como base nitrogenada a instável, mal cheirosa e tóxica piridina.

O Dr. Eugen Scholz e sua equipe de pesquisa conseguiram substituir a piridina por uma base mais forte, estável e eficiente. O imidazol se provou ser benéfico sobre a piridina permitindo uma reação mais rápida e com ponto final mais estável. Posteriormente pesquisadores encontraram que adicionando uma segunda base, o 2-metilimidazol, a estabilidade foi ainda melhorada além de não exibir cristalização dos reagentes.

Por isso os reagentes Hydranal são conhecidos no mundo todo como os reagentes originais, que completam orgulhosamente 40 anos no ano de 2019.

Porque Hydranal?

Karl Fischer Volumétrico

Os reagentes de um componente Hydranal-Composite tiveram sua composição alterada em 2001, tornando-os:

•Os reagentes com o título mais estável.

- o título mais estável do mercado (3 anos de shelf life)
- •Isentos de cristalização
- •Isentos de Metanol (utiliza o solvente dietileno glicol monoetil éter)
- •Compatíveis para titulação de cetonas (com a combinação de Hydranal-Medium K ou Hydranal-KetoSolver)

Karl Fischer Coulométrico

O catálogo coulométrico de Hydranal possui o maior número de soluções, oferecendo a solução anódica mais adequada para cada tipo de aplicação.

Desde aplicações de rotina com metanol, até óleos, cetonas, aldeídos, aplicações especiais em forno Karl Fischer.

Como realizar a fatoração do reagente de Karl Fischer Volumétrico

Para buretas automáticas, sempre se busca o consumo de meia bureta a fim de otimização da precisão e exatidão da metodologia. Portanto para uma bureta de 10 mL, consideraremos o valoralvo de consumo em 5 mL, ou seja, metade de sua capacidade.

Exemplo 1:

Fatoração com padrão líquido com 1,0% de água. Solução titulante com concentração nominal de 5,0 mg/mL. Consumo de 5 mL da solução corresponderia, portanto a 5 mL * 5 mg/mL = 25 mg água.

Para um padrão com 1,0%, temos que 25 mg / 1,0% = 2500 mg = 2,5 g do padrão em questão.

Cálculo do fator da solução após Injeção de aproximadamente 2,5 mL do padrão de água 1,0 %.

Cálculo do Título

Grandeza	Variável	Valor Unidade	Cálculo
Concentração padrão	С	1.00%	
Massa alíquota	m	2.5 g	
Massa absoluta de água	mw	25 mg	mw = C * m
Volume de reagente gasto	V	4.9 mL	
Título da solução	Т	5.102 mg/mL	T = mw / V

A massa de amostra/padrão inserido no sistema de KF deve ser aferida por meio de diferença de pesagem. Recomenda-se que a fatoração seja feita com no mínimo uma triplicata de valores e o título médio seja utilizado. Na realização de determinação de título em triplicata é possíve calcular a precisão de determinação por meio do coeficiente de variação dos resultados obtidos.

Tipicamente a precisão obtida com uso de padrões de água é de 0,1 a 0,5 %, enquanto para fatoração realizada com água pura, estes valores podem facilmente ultrapassar 5%. Isto prova que o uso de padrões de água aumentam drásticamente a precisão das análises de Karl Fischer, consequentemente reduzindo a incerteza da metodologia e também seu limite de quantificação.

Determinação de umidade após fatoração

Com o fator conhecido, o resultado de umidade de uma mostra será dado por:

Umidade mg/g = título da solução * volume de solução / massa de amostra

Exemplo 2:

Cálculo de Umidade KFV

Grandeza	Variável	Valor Unidade	Cálculo
Título da solução	T	5.102 mg/mL	
Massa amostra	m	0.5 g	
Volume de reagente gasto	V	3.5 mL	Alvo = >20 - <80% Vol. bureta

Conversões de unidade em Karl Fischer

Unidade	De↓/ Para →	%	mg/g	mg/kg (ppm)	μg/kg (ppb)
Parte por centena	%		*10	*10.000	*10.000.000
Parte por milhar	mg/g	/10		*1.000	*1.000.000
Parte por milhão	mg/kg (ppm)	/10.000	/1.000		*1.000
Parte por bilhão	μg/kg (ppb)	/10.000.000	/1.000.000	/1.000	

Seleção do tamanho de amostra

Como regra geral, o melhor tamanho de amostra (massa) é aquela cuja quantidade de água seja suficiente para gasto de meio volume de bureta, onde os resultados apresentarão maior exatidão e precisão devido aos erros inerentes da bureta do equipamento.

O tamanho de amostra deve ser ajustado de acordo com a composição, solubilidade e disponibilidade do material a ser titulado. A tabela abaixo apresenta um guia para seleção do tamanho de amostra ideal.

	Título 5 mg/mL		Título 5 mg/mL Título 2 mg/mL		mL	Título 1 mg/mL			
	Volume da Bureta		Volu	Volume da Bureta		Volume da Bureta			
	5 mL	10 mL	20 mL	5 mL	10 mL	20 mL	5 mL	10 mL	20 mL
Teor de água esperado	amo	nho de ostra omendad	lo(g)	amo	nho de ostra omendad	lo(g)	amo	nho de ostra omendad	o(g)
90%	Χ	0.04	0.08	7	15	Χ	Χ	Χ	X
75%	X	0.05	0.1	0.01	0.02	Χ	Χ	Χ	0.02
50%	Χ	0.08	0.16	15	0.03	0.05	Χ	15	25
20%	0.08	125	0.25	25	0.05	0.1	Χ	25	0.05
10%	125	0.25	0.5	0.05	0.1	0.2	25	0.05	0.1
5%	0.25	0.5	1	0.1	0.2	0.4	0.05	0.1	0.2
2.5%	0.5	1	2	0.2	0.4	8.0	0.1	0.2	0.4
0.25%	5	10	20	2	4	8	1	2	4
0.1% (1000 ppm)	12.5	25	25	5	10	20	3	6	12
0.01% (100 ppm)	25	25	Χ	25	25	Χ	25	25	X
0.001% (10 ppm)	Χ	Χ	Χ	25	X	Χ	25	Χ	Χ

Legenda

Consumo superior ao volume de 1/2 Bureta

Consumo aproximado de 1/2 volume da Bureta

Consumo de menos de 1/2 volume da Bureta

X Não recomendado

Tamanho de amostra recomendado para titulação Karl Fischer coulométrica

A técnica de KF Coulométrico não possui bureta nem título de solução, pois é uma metodologia absoluta que converte corrente elétrica gasta, diretamente em água. De qualquer forma é importante que a seleção do tamanho de amostra correto seja feita na técnica e como regra geral, recomendase a introdução de 100 a 5000 μg H2O por amostra.

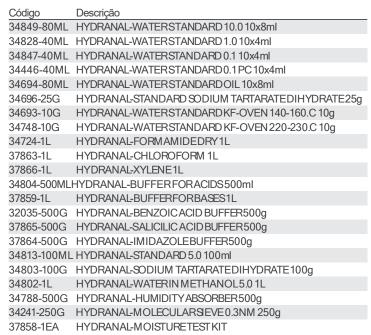
A tabela abaixo exemplifica tamanhos de injeção comuns por teor de água esperado:

Teor de água (%)	Teor de água (ppm)	Massa amostra
10,0000%	100.000 ppm	0,05g
1,0000%	10.000 ppm	0,20g
0,1000%	1.000 ppm	2,00g
0,0100%	100 ppm	5,00g
0,0010%	10 ppm	10,00g
0,0001%	1 ppm	10,00g

$Sering as \, recomendad as \, para \, uso \, em \, Karl \, Fischer$

Descrição	Referência	Marca
Seringa 5mL Gas-tight modelo 1005 TLL PTFE Luer Lock	H81520	Hamilton
Seringa 5mL Gas-tight PTFE Luer Lock	5190-1539	Agilent
Seringa 10mLGas-tightmodelo 1010TLLPTFELuerLock	H81620	Hamilton
Seringa 10mL Gas-tight PTFE Luer Lock	5190-1457	Agilent
Agulha luer lock 120 mm ponta 4 gauge 20 (0.80 mm d.intemo) p/uso geral	H7748-06-1	Hamilton
Agulha luerlock 120 mm ponta 4 gauge 16 (1.30 mm d.interno) p/amostras viscosas	H7748-02-1	Hamilton
Microseringa 25 µL com ponta do êmbolo PTFE agulhafixa G25 p/injeção de água	5190-1497	Agilent
Microseringa 50 μL com ponta do êmbolo PTFE agulhafixa G25 p/injeção de água	5190-1503	Agilent

Principais produtos Hydranal™


Código	Descrição
34827-1L	HYDRANAL-COMPOSITE11L
34806-1L	HYDRANAL-COMPOSITE21L
34805-1L	HYDRANAL-COMPOSITE51L
34816-1L	HYDRANAL-COMPOSITE5 K1L
37817-1L	HYDRANAL-METHANOLRAPID 1L
34741-1L	HYDRANAL-METHANOLDRY1L
34734-1L	HYDRANAL-COMPOSOLVERe1L
34697-1L	HYDRANAL-SOLVER(CRUDE) OIL 1L
37855-1L	HYDRANAL-LIPOSOLVERCM 1L
37856-1L	HYDRANAL-LIPOSOLVERMH1L
34698-1L	HYDRANAL-MEDIUM K1L
34738-1L	HYDRANAL-KETOSOLVER1L
34817-1L	HYDRANAL-WORKINgMEDIUM K1L
34811-1L	HYDRANAL-TITRANT 21L
34801-1L	HYDRANAL-TITRANT51L
34800-1L	HYDRANAL-SOLVENT1L
34723-1L	HYDRANAL-TITRANT2e1L
34732-1L	HYDRANAL-TITRANT5e1L
34730-1L	HYDRANAL-SOLVENTe1L
34812-1L	HYDRANAL-SOLVENT CM 1L
34749-1L	HYDRANAL-SOLVENTOIL1L
34697-1L	HYDRANAL-SOLVER(CRUDE) OIL 1L
34807-500M	L HYDRANAL-COULOMAT A 500ml
34836-500ML	HYDRANAL-COULOMAT Ag 500ml
34843-500ML	HYDRANAL-COULOMAT AG-H500ml
34739-500M	L HYDRANAL-COULOMATAg OVEN 500 ml
34820-500ML	HYDRANAL-COULOMAT AK 500ml
34868-500ML	HYDRANAL-COULOMAT OIL 500ml
34726-500MI	L HYDRANAL-COULOMATe500ml
34810-500M	L HYDRANAL-COULOMAT AD 500ml
34840-50ML	HYDRANAL-COULOMAT Cg10 AMPOLASc/5ml
34821-50ML	HYDRANAL-COULOMATCG-K 10 AMPOLAS c/5ml
34425-80ML	HYDRANAL-CRMWATERSTANDARD 10.0 10x8ml
34426-40ML	HYDRANAL-CRMWATERSTANDARD 1.0 10x4ml
34424-10G	HYDRANAL-CRM SODIUM TARTARATEDIHYDRATE10g

Voltar ao Índice ^

Honeywell Research Chemicals

Principais produtos Hydranal™

Principais produtos Chromasolv™

Solventes para HLPC Código

34858-4L

34850-4L

34851-4L	Acetonitrila HPLC Gradiente Chromasolv 4 L
270733-4L	Água HPLC Chromasolv 4L
34855-4L	Ciclohexano, 99,7+% HPLC Chormasolv 4L
34854-4L	Clorofórmio HPLC Chromasolv 4 L
34856-4L	Diclorometano HPLC Chromasolv 4 L
270741-4L	Etanol 89% Desnaturado HPLC Chromasolv 4 L
34964-2.5L	Etanol Absoluto 99,9% HPLC Gradiente 2,5L
34873-4L	Heptano 99+% HPLC Chromasolv 4L
34862-4L	Isooctano 99+% HPLC 4L
34863-4L	Isopropanol HPLC Chromasolv 4 L
34885-4L	Metanol HPLC Gradiente Chromasolv 4 L
34859-4L	N-Hexano HPLC Chromasolv 4 L
34875-2.5L	TercButil Metil Éter 99,8+% HPLC Chromasolv 2
34865-2.5L	Tetrahidrofurano 99,9% HPLC Chromasolv 2,5L
34866-4L	Tolueno HPLC Chromasolv 4 L
31063-4L	Acetato de Etila Pesticida Chromasolv 4 L
34496-41	Ciclohexano Pesticida Chromasoly 4 I

Descrição

Acetato de Etila HPLC Chromasolv 4 L

Acetona HPLC Chromasolv 4 L

Solventes para GC

Solventes para UHPLC, LC-MS e GC-HEADSPACE

	0 1002 12	1000014110 00 1 70 1 11 20 12
	34863-4L	Isopropanol HPLC Chromasolv 4 L
	34885-4L	Metanol HPLC Gradiente Chromasolv 4 L
	34859-4L	N-Hexano HPLC Chromasolv 4 L
	34875-2.5L	Terc Butil Metil Éter 99,8+% HPLC Chromasolv 2,5L
	34865-2.5L	Tetrahidrofurano 99,9% HPLC Chromasolv 2,5L
	34866-4L	Tolueno HPLC Chromasolv 4 L
	31063-4L	Acetato de Etila Pesticida Chromasolv 4 L
	34496-4L	Ciclohexano Pesticida Chromasolv 4 L
	34488-4L	Diclorometano HPLC/Pesticida Chromasolv 4 L
	34869-4L	Dimetilsulfoxido HPLC GC Chromasolv 4 L
	34484-4L	N-Hexano Pesticida Chromasolv 4 L
	34499-4L	Isooctano Pesticida Chromasolv 4 L
	34967-2.5L	Acetonitrila LC-MS Chromasolv 2,5L
	39253-1L	Agua LC-MS Chromasolv 1L (atualizado)
	51779-2.5L	Dimetilsulfoxido 99,9+% GC-HEADSPACE 2,5L
	51781-1L	N,N-Dimetilformamida 99,9+% GC-HEADSPACE 1L
	67484-1L	1.3-Dimethyl-2-imidazolidinone GC-HEADSPACE 1L

Voltar ao Índice ^

Honeywell Research Chemitals

	Código	Descrição
Ácidos	33209-1L-GL	Ácido Acético Glacial 99,8+% PAACS ISO Farm.Eur 1L (Vidro)
	30721-1L-GL	Ácido Clorídrico 37% Fumeg. PAACS ISO Farm. Eur 1L (Vidro)
	33015-1L	Ácido Formico 98+%PA ACSFarm.Eur 1L
	30417-1L	Ácido Orto Fosfórico 85+% PA ACSISO Farm.Eur1L
	30743-1L	Ácido Sulfúrico 97%PA ACSISO Farm.Eur1L
	30709-1L-GL	Ácidro Nítrico 65+% PAISO Farm. Eur 1L (Vidro)
Álcoois	402834-1L	Álcool Benzílico 99+% PA ACS-1L
	32294-1L	Etanol 96% PA ACSFarm.Eur 1L
	32221-1L	Etanol Absoluto 99,8% PA ACS-1L
	320048-1L	Isobutanol 99%PAACS-1L
	33539-1L-GL	Isopropanol 99,8+% PAACS ISO Farm.Eur 1L (Vidro)
	32213-1L	Metanol 99,8+% PA ACSISO Farm.Eur.1L
Tampões	71185-250G	Acetato de Sódio Anidro 99+% HPLC - 250 G
	34549-1kg	EDTA Sal Dissodico 2H2O99 101% Farm.Eur 1kg
	60221-1kg	Fosfato de Potássio Monobásico para HPLC > 99,5% - 1kg
	33668-500ML	Solução Tampão pH 10, cor violeta - 500ml
	33665-500ML	Solução Tampão pH 4, cor vermelha - 500ml
	33666-500ML	Solução Tampão pH 7, cor verde - 500ml
Sais	06220-1kg	Cloreto de Alumínio Anidro 99+% PA Cristalizado - 1kg
	31107-500G	Cloreto de Amônio 99,5+% PA ACSISO FARM.EUR500g
	31307-1kg	Cloreto de Cálcio 2H2O 99+% PA ACSFarm.Eur1kg
	31248-1kg	Cloreto de Potássio 99,5-100,5% PA ISO Farm. Eur 1kg
	31434-1kg	Cloreto de Sódio 99,5+% PAACS ISO Farm.Eur 1kg
	04243-1kg	Fosfato de Potássio Monobásico Anidro 98-100,5% Puro - 1kg
	31270-1kg	Sulfato de Potássio 99+% PA ACSISO - 1kg
	238597-1kg	Sulfato de Sódio Anidro 99+% PA ACS-1kg
	31459-1Kg	Tiossulfato de Sódio 5H2O 99,5+% PAACS ISO Farm.Eur 1kg
Soluções volumétricas	34256-10L-VP	Ácido acético solução volum. 1.0M (1.0N) - 10L - Volpac™
	34256-1L	Ácido acético solução volum. 1.0M (1.0N) - 1L
		Ácido clorídrico solução volum. 1.0M (1.0N) - 500ml
		Ácido clorídrico solução volum. 2.0M (2.0N) - 10L - Volpac™
	35327-1L	Ácido clorídrico solução volum. 2.0M (2.0N) - 1ml
	35276-1L	Ácido sulfúrico solução volum. 1M (2N) - 1L
		Ácido sulfúrico solução volum. 2.5M (5N) - 10L - Volpac™
	35348-1L	Ácido sulfúrico solução volum. 2.5M (5N) - 1L
		Hidróxido de amônio solução volum. 5M (5N) - 500ml
	35116-1L	Hidróxido de potássio solução volum. 0.5M (0.5N) - 1L
	35116-5L-VP	Hidróxido de potássio solução volum. 0.5M (0.5N) - 5L - Volpac™
	319511-1L 318612-2L	Hidróxido de sódio solução volum. 1.0M (1.0N) - 1L
	35245-1L	Solução Hidróxido de Amônio 5M (5N) - 2L Solução Tiossulfato de Sódio 0,1M (0,1N) - 1L
Solventes	45760-1L	Acetato de Etila 99,5+% PA ACS-1L
Solvenies	32201-1L	Acetona 99,5+%PA ACSISO Farm.Eur1L
	472476-1L	Clorofórmio 99,8+% PA-ACS-1L
	32222-1L	Diclorometano 99,9+%PA ACSISO - 1L
	319937-1L	N,N-Dimetilformamida 99,8+% PA ACS-1L
	360570-1L	Piridina 99+%PAACS1L
Control Control	360589-1L	Tetrahidrofurano 99+%PA ACS-1L
	32249-1L	Tolueno - 99,7% PA ACSISO FARM .EUR 1L
POLANAL	16446-1L	Xileno - 1L

Burdick & Jackson - BioSyn

REAGENTES E SOLVENTES PARA SÍNTESE DE DNA/RNA

A Honeywell Burdick & Jackson™ (B&J) desenvolveu os primeiros solventes de alta pureza há mais de 50 anos. Hoje, é um fabricante líder de solventes de alta pureza e reagentes de DNA/RNA.À medida que novas aplicações e técnicas surgem, Burdick & Jackson continua a desenvolver produtos para atender aos requisitos mais exigentes para laboratórios e produção farmacêutica. Nossas soluções de embalagem, desde a escala do laboratório até a produção, oferecem aos nossos clientes valor agregado, maior eficiência e seguranca aprimorada.

Os reagentes são especificamente processados e purificados para especificações exatas, garantindo uma excelente eficiência de síntese. Isso os torna ideais para síntese de oligonucleotídeos independentemente da aplicação. Todos os solventes e reagentes são filtrados (0,2 mícron para reagentes de oxidação e 0,1 mícron para todos os outros reagentes) para minimizar contaminação por partículas. A linha BioSyn inclui uma ampla gama de reagentes de síntese DNA e RNA, incluindo bloqueadores, ativadores, cappings e oxidantes, todos em várias formulações bem como acetonitrila com teor de água extremamente baixo.

Os produtos BioSyn atendem às necessidades dos usuários em farmacogenômica, diagnóstico e pesquisa de medicamentos e estão disponíveis em uma variedade de embalagem de 45mL a 1.250L. A embalagem é projetada para facilitar a conexão direta com sintetizadores.

Voltar ao Índice ^

Principais produtos	Código	Descrição
BioSyn™	BR605-2	3%Trichloroacetic acid in Dichloromethane 4x2L
ыозун	BR605-20	3%Trichloroacetic acid in Dichloromethane 20L
Deblocking Reagents	SR622-20	3%Dichloroacetic acid in Dichloromethane 20L
Deblocking Reagenes	BD622-200	3%Dichloroacetic acid in Dichloromethane 200L
	SR674-4	3%Dichloroacetic acid in Toluene 4x4L
	BD674-200	3%Dichloroacetic acid in Toluene 200L
Activator Reagents	SR731-1	BMI0.30M5-Benzylthio-1H-tetrazole, 0.5% NMI, 99.5% Acetonitrile 1L
Activator Reagents	BC731-200	BMI0.30M5-Benzylthio-1H-tetrazole, 0.5% NMI, 99.5% Acetonitrile 200L
		rBMI 0.30M 5-Benzylthio-1H-tetrazole, 0.5% NMI, 99.5% Acetonitrile 1L
		rBMI-0.30M5-Benzylthio-1H-tetrazole, 0.5%NMI, 99.5% Acetonitrile 200L
	BC730-200	BMT 0.20M 5-Benzylthio-1H-tetrazole in Acetonitrile - 200L
	BC730-200	ETT 0.25M 5-Ethylthio-1H-tetrazole in Acetonitrile 200L
	BR725-1	0.50M 5-Ethylthio-1H-tetrazole in Acetonitrile 2x1L
	BC725-200	0.50M 5-Ethylthio-1H-tetrazole in Acetonitrile 200L
	BR726-1	0.60M 5-Ethylthio-1H-tetrazole in Acetonitrile 2x1L
	BC726-56	0.60M 5-Ethylthio-1H-tetrazole in Acetonitrile 2XTL
Capping Reagents	BR640-2	10% Acetic Anhydride, 10% 2,6-Lutidine, 80% THF 4x2L
Capping Reagents Cap A	BC640-200	10% Acetic Anhydride, 10% 2,6-Lutidine, 80% THF 200L
Сард	BR641-2	10% Acetic Anhydride, 10% 2,0-Editalile, 80% THF 200E
	SR639-4	10% Acetic Anhydride, 90% THF 4x4L
	CS639-200	10%Acetic Anhydride, 90%THF 200L
	SR644-20	20% Acetic Anhydride, 30% 2,6-Lutidine, 50% Acetonitrile 20L
	BC644-200	
Capping Reagents		20% Acetic Anhydride, 30% 2,6-Lutidine, 50% Acetonitrile 200L 16% N-Methylimidazole, 84% THF 4x2L
Capping Reagents Cap B	BR650-2 BC650-200	,
Сарь	BR651-2	16%N-Methylimidazole, 84%THF200L 10%N-Methylimidazole, 90%THF
	SR653-4	10%N-Methylimidazole, 90%TTT 10%N-Methylimidazole, 10%Pyridine, 80%THF 4x4L
	CS653-200	10%N-Methylimidazole, 10%Pyridine, 80%THF 200L
	BR654-1	20%N-Methylimidazole, 80%Acetonitrile 2x1L
	SR654-200	20%N-Methylimidazole, 80%Acetonitrile 2X1L
Oxidation Reagents	BR663-2	0.02M lodine, 2% Water, 20% Pyridine, 78% THF 4x2L
Oxidacioniteagenes		0.05M lodine, 10% Water, 90% Pyridine 4x2.5L
	BR664-200	0.05M lodine, 10% Water, 90% Pyridine 200L
	BR665-4	0.02M lodine, 10% Water, 0.4% Pyridine, 89.6% THF 4x4L
	CS665-200	0.02M lodine, 10% Water, 0.4% Pyridine, 89.6% THF 200L
	BR666-2	0.02M lodine, 10% Water, 20% Pyridine, 70% THF 4x2L
	BR666-200	0.02M lodine, 10% Water, 20% Pyridine, 70% THF 200L
	BR761-1GL	0.05M lodine, 10% Water, 10% Pyridine, 80% Acetonitrile 2x1L
	BC761-200	0.05M lodine, 10% Water, 10% Pyridine, 80% Acetonitrile 200L
Solvents	BB017-4	Acetonitrile 4x4L
501761165	BC017-1250	Acetonitrile 1250L
	BR017-0045	
	BB301-4	Diclorometano 4x4L
	BC301-200	Dichloromethane 200L
	BB333-4	Pyridine 4x4L
	BC333-200	Pyridine 200L
	BB343-4	Tetrahydrofuran 4x4L
	BC343-200	Tetrahydrofuran 200L
	BB359P100	Triethylamine 12x100mL
	BB359-1	Triethylamine 6x1L
	BB360P050	Trifluoroacetic acid 12x50mL
	BB360P500	Trifluoroacetic acid 6x500mL